555定时器是一种集成电路芯片,常被用于定时器、脉冲产生器和振荡电路。555可被作为电路中的延时器件、触发器或起振元件

555定时器于1971年由西格尼蒂克公司推出,由于其易用性、低廉的价格和良好的可靠性,被广泛应用于电子电路的设计中。许多厂家都生产555芯片,包括采用双极型晶体管的传统型号和采用CMOS设计的版本。555被认为是年产量最高的芯片之一,仅2003年,就有约10亿枚的产量。

555还有低功耗的版本,包括7555和使用CMOS电路的TLC555。7555的功耗比标准的555低,而且其生产商宣称7555的控制引脚并不像其他555芯片那样需要接地电容,同时供电与地之间也不需要消除噪声的去耦电容。

中文名

555定时器

类 别

集成器

特 点

成本低、性能可靠

制作工艺

双极型(TTL)

类 型

中规模集成器件

设计

555定时器由Hans R. Camenzind于1971年为西格尼蒂克公司设计。西格尼蒂克公司后来被飞利浦公司所并购。

不同的制造商生产的555芯片有不同的结构,标准的555芯片集成有25个晶体管,2个二极管和15个电阻并通过8个引脚引出(DIP-8封装)。555的派生型号包括556(集成了两个555的DIP-14芯片)和558与559。

NE555的工作温度范围为0-70°C,军用级的SE555的工作温度范围为−55到+125 °C。555的封装分为高可靠性的金属封装(用T表示)和低成本的环氧树脂封装(用V表示),所以555的完整标号为NE555V、NE555T、SE555V和SE555T。一般认为555芯片名字的来源是其中的三枚5KΩ电阻,但Hans Camenzind否认这一说法并声称他是随意取的这三个数字。

555还有低功耗的版本,包括7555和使用CMOS电路的TLC555。7555的功耗比标准的555低,而且其生产商宣称7555的控制引脚并不像其他555芯片那样需要接地电容,同时供电与地之间也不需要消除噪声的去耦电容。

引脚

DIP封装的555芯片各引脚功能如下表所示:

引脚

名称

功能

1

GND(地)

接地,作为低电平(0V)

2

TRIG(触发)

当此引脚电压降至1/3VCC(或由控制端决定的阈值电压)时输出端给出高电平。

3

OUT(输出)

输出高电平(+VCC)或低电平。

4

RST(复位)

当此引脚接高电平时定时器工作,当此引脚接地时芯片复位,输出低电平。

5

CTRL(控制)

控制芯片的阈值电压。(当此管脚接空时默认两阈值电压为1/3VCC与2/3VCC).

6

THR(阈值)

当此引脚电压升至2/3VCC(或由控制端决定的阈值电压)时输出端给出低电平。

7

DIS(放电)

内接OC门,用于给电容放电。

8

V+,VCC(供电)

提供高电平并给芯片供电。

用途

555定时器可工作在三种工作模式下:

单稳态模式:在此模式下,555功能为单次触发。应用范围包括定时器,脉冲丢失检测,反弹跳开关,轻触开关,分频器,电容测量,脉冲宽度调制(PWM)等。

无稳态模式:在此模式下,555以振荡器的方式工作。这一工作模式下的555芯片常被用于频闪灯、脉冲发生器、逻辑电路时钟、音调发生器、脉冲位置调制(PPM)等电路中。如果使用热敏电阻作为定时电阻,555可构成温度传感器,其输出信号的频率由温度决定。

双稳态模式(或称施密特触发器模式):在DIS引脚空置且不外接电容的情况下,555的工作方式类似于一个RS触发器,可用于构成锁存开关。

单稳态模式

在单稳态工作模式下,555定时器作为单次触发脉冲发生器工作。当触发输入电压降至VCC的1/3时开始输出脉冲。输出的脉宽取决于由定时电阻与电容组成的RC网络的时间常数。当电容电压升至VCC的2/3时输出脉冲停止。根据实际需要可通过改变RC网络的时间常数来调节脉宽。

输出脉宽t,即电容电压充至VCC的2/3所需要的时间由下式给出:

虽然一般认为当电容电压充至VCC的2/3时电容通过OC门瞬间放电,但是实际上放电完毕仍需要一段时间,这一段时间被称为“弛豫时间”。在实际应用中,触发源的周期必须要大于弛豫时间与脉宽之和(实际上在工程应用中是远大于)。

双稳态模式

双稳态工作模式下的555芯片类似基本RS触发器。在这一模式下,触发引脚(引脚2)和复位引脚(引脚4)通过上拉电阻接至高电平,阈值引脚(引脚6)被直接接地,控制引脚(引脚5)通过小电容(0.01到0.1μF)接地,放电引脚(引脚7)浮空。所以当引脚2输入高(有误应为低)电压时输出置位,当引脚4接地时输出复位。

无稳态模式

无稳态工作模式下555定时器可输出连续的特定频率的方波。电阻R1接在VCC与放电引脚(引脚7)之间,另一个电阻(R2)接在引脚7与触发引脚(引脚2)之间,引脚2与阈值引脚(引脚6)短接。工作时电容通过R1与R2充电至2/3VCC,然后输出电压翻转,电容通过R2放电至1/3VCC,之后电容重新充电,输出电压再次翻转。

对于双极型555而言,若使用很小的R1会造成OC门在放电时达到饱和,使输出波形的低电平时间远大于上面计算的结果。

为获得占空比小于50%的矩形波,可以通过给R2并联一个二极管实现。这一二极管在充电时导通,短路R2,使得电源仅通过R1为电容充电;而在放电时截止以达到减小充电时间降低占空比的效果。

参数

以下为NE555的电气参数,其他不同规格的555定时器可能会有不同的参数,请查阅数据手册。

供电电压(VCC)

4.5-16 V

额定工作电流(VCC= +5 V)

3-6 mA

额定工作电流(VCC= +15 V)

10-15 mA

最大输出电流

200 mA

最大功耗

600mW

最低工作功耗

30mW(5V),225mW(15V)

温度范围

0-70°C

衍生芯片

555定时器有许多不同公司生产的衍生型号,其中有引脚功能不同的型号,也有采用CMOS的设计。有的芯片中包括数个集成的555定时器。555芯片家族的其他一些型号如下:

生产厂商

型号

备注

Avago Technologies

Av-555M

Custom Silicon Solutions

CSS555/CSS555C

CMOS芯片,最低工作电压1.2V, IDD<5µA

CEMI

ULY7855

ECG Philips

ECG955M

Exar

XR-555

仙童

NE555/KA555

Harris

HA555

IK Semicon

ILC555

CMOS芯片,最低工作电压2V

英特硅尔

SE555/NE555

英特硅尔

ICM7555

CMOS

Lithic Systems

LC555

美信

ICM7555

CMOS芯片,最低工作电压2V

摩托罗拉

MC1455/MC1555

美国国家半导体

LM1455/LM555/LM555C

美国国家半导体

LMC555

CMOS芯片,最低工作电压1.5V

NTE Sylvania

NTE955M

雷声

RM555/RC555

RCA

CA555/CA555C

意法半导体

NE555N/ K3T647

德州仪器

SN52555/SN72555

德州仪器

TLC555

CMOS芯片,最低工作电压2V

苏联

K1006ВИ1

Zetex

ZSCT1555

最低工作电压0.9V

恩智浦半导体

ICM7555

CMOS

HFO /东德

B555

日立

HA17555

556双定时器

在一块芯片中集成两个555定时器的型号为556,这种芯片包括14个引脚。

558四定时器

在一块芯片中集成四个555定时器的型号为558。这种芯片包括16个引脚,其中四个555定时器共用供电、接地和复位的引脚。放电引脚与阈值引脚被合为同一个引脚并被称为“定时”。同时触发引脚改为下降沿触发。

参见

运算放大器

振荡器

RC电路